高级检索
    陈欢,冯晓亮,刘一民,等,2024. 基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究[J]. 沉积与特提斯地质,44(3):572−581. DOI: 10.19826/j.cnki.1009-3850.2024.08006
    引用本文: 陈欢,冯晓亮,刘一民,等,2024. 基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究[J]. 沉积与特提斯地质,44(3):572−581. DOI: 10.19826/j.cnki.1009-3850.2024.08006
    CHEN H,FENG X L,LIU Y M,et al.,2024. Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area[J]. Sedimentary Geology and Tethyan Geology,44(3):572−581. DOI: 10.19826/j.cnki.1009-3850.2024.08006
    Citation: CHEN H,FENG X L,LIU Y M,et al.,2024. Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area[J]. Sedimentary Geology and Tethyan Geology,44(3):572−581. DOI: 10.19826/j.cnki.1009-3850.2024.08006

    基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究

    Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area

    • 摘要: 地表位移预测在滑坡监测预警中具有重要意义,建立稳定可靠的滑坡位移预测模型是关键。本文基于卷积神经网络和注意力机制的滑坡位移预测方法,并以三峡库区黄泥巴蹬坎滑坡为例进行了验证。本文综合分析了该滑坡长达8年的降雨量、库水位和地表位移等监测数据,建立了结合卷积神经网络(convolutional neural network, CNN)、双向长短期记忆(bidirectional long short-term memory, BiLSTM)网络和注意力机制(attention)的CNN-BiLSTM-Attention深度学习组合预测模型,采用了适应性学习率和正则化技术进行模型训练,提高了模型的泛化能力同时避免过拟合,并与传统LSTM模型进行对比验证。结果表明:相较于传统的机器学习和神经网络方法,该模型在滑坡位移预测精度上取得了显著提升,预测模型拟合优度(R2)达0.989,平均绝对百分比误差(MAPE)仅为0.059。

       

      Abstract: Surface displacement prediction is of great significance in landslide monitoring and early warning, and establishing a stable and reliable landslide displacement prediction model is crucial. This paper utilizes a convolutional neural network (CNN) and attention mechanism to predict landslide displacement, and takes the Huangniba Dengkan landslide in the Three Gorges reservoir area as an example for verification. This paper comprehensively analyzes the landslide's monitoring data on rainfall, reservoir water level, and surface displacement for 8 years. It establishes a CNN-BiLSTM-Attention deep learning combination prediction model, and uses adaptive learning rate and regularization techniques for model training, improving the generalization ability of the model while avoiding overfitting. Additionally, the model is subjected to comparative validation with the traditional long short-term memory (LSTM) model. The results show that the model's landslide displacement prediction accuracy has been significantly enhanced compared to traditional machine learning and neural network methods. The prediction model's goodness of fit (R2) reaches 0.989, and the mean absolute percentage error (MAPE) is merely 0.059.

       

    /

    返回文章
    返回