高级检索
    翁彦梅,张伟,高连通,2024. 基于SHALSTAB-SVM模型的降雨型滑坡危险性评价:以云南省大关县为例[J]. 沉积与特提斯地质,44(3):523−533. DOI: 10.19826/j.cnki.1009-3850.2024.07004
    引用本文: 翁彦梅,张伟,高连通,2024. 基于SHALSTAB-SVM模型的降雨型滑坡危险性评价:以云南省大关县为例[J]. 沉积与特提斯地质,44(3):523−533. DOI: 10.19826/j.cnki.1009-3850.2024.07004
    WENG Y M,ZHANG W,GAO L T,2024. Risk assessment of rainfall-induced landslides based on SHALSTAB-SVM model: A case study of Daguan County, Yunnan Province[J]. Sedimentary Geology and Tethyan Geology,44(3):523−533. DOI: 10.19826/j.cnki.1009-3850.2024.07004
    Citation: WENG Y M,ZHANG W,GAO L T,2024. Risk assessment of rainfall-induced landslides based on SHALSTAB-SVM model: A case study of Daguan County, Yunnan Province[J]. Sedimentary Geology and Tethyan Geology,44(3):523−533. DOI: 10.19826/j.cnki.1009-3850.2024.07004

    基于SHALSTAB-SVM模型的降雨型滑坡危险性评价:以云南省大关县为例

    Risk assessment of rainfall-induced landslides based on SHALSTAB-SVM model: A case study of Daguan County, Yunnan Province

    • 摘要: 我国是降雨型滑坡地质灾害频发国家之一,频繁发生的滑坡灾害对社会经济发展和人民生活质量造成不同程度的影响。针对我国长期面临的降雨型滑坡灾害威胁,本研究提出采用SHALSTAB和SVM模型相结合的方法,充分利用了SHALSTAB模型对降雨入渗影响边坡稳定性评价的优势和SVM模型对非线性数据的处理能力,开发形成SHALSTAB-SVM模型。本次研究选择云南省大关县作为研究区域,深入探究降雨型滑坡的危险性评估。研究结果表明,该模型的评估精度,由单一SHALSTAB模型的82.7%提高至SHALSTAB-SVM模型的94.5%,精度提升达到14.268%。这一显著提升彰显了融合模型在准确分析降雨型滑坡危险性预测方面具备更高的准确性。同时,卫星影像解译情况表明预测结果与实际滑坡情况相符,进一步验证了该模型在实际应用中展现出了高度的准确性。该研究不仅在大关县滑坡灾害风险评估方面具有重要意义,同时也为类似地区或其他类型地质灾害的预测和评估提供了宝贵的参考。

       

      Abstract: China is one of the countries with frequent rainfall-induced landslide geological disasters. Frequent landslide disasters affect economic development and quality of people's life to some degree. To address this issue, this study proposes a method combining the SHALSTAB model and SVM model, which integrates the advantage of the SHALSTAB model in evaluating the stability of rainfall infiltration on slopes with the advantage of the SVM model in processing nonlinear data. In this study, Daguan County in Yunnan Province has been selected as the research focus to further explore the risk assessment of rainfall-induced landslides. The results show that the evaluation accuracy of the model improves from 82.7% for the single-SHALSTAB model to 94.5% for the SHALSTAB-SVM model, and the accuracy improves by 14.268%. This significant improvement highlights the higher accuracy of the fusion model in accurately analyzing the risk prediction of rainfall-induced landslides. Meanwhile, the satellite image interpretation confirms that the prediction results are consistent with actual landslide conditions, verifying the model's better accuracy in practical applications. This study is not only of great significance for the risk assessment of landslide disasters in Daguan County, but also provides a valuable reference for the prediction and assessment of similar areas or other types of geological disasters.

       

    /

    返回文章
    返回